

Linux in Production

Ron Brightwell
Sandia National Laboratories
Scalable Computing Systems

Outline

- Sandia system software research
- Target system architecture
- Cplant[™] architecture
- Linux results and observations
- Issues
- Summary
- Future

Sandia System Software Research

- Intel Paragon
 - 1,890 compute nodes
 - 3,680 i860 cpu's
 - 143/184 GFLOPS
 - 175 MB/sec network
- SUNMOS lightweight kernel
 - High performance compute node OS for distributed memory MPP's
 - Deliver as much performance as possible to apps
 - Small footprint
 - Started in January 1991 on the nCUBE-2 to explore new message passing schemes and highperformance I/O
 - Ported to Intel Paragon in Spring of 1993

- Intel TeraFLOPS
 - 4,576 compute nodes
 - 9,472 Pentium II cpu's
 - 2.38/3.21 TFLOPS
 - 400 MB/sec network
- Puma lightweight kernel
 - Multiprocess support
 - Modularized (kernel, PCT)
 - Developed on nCUBE-2 in 1993
 - Ported to Intel Paragon in 1995
 - Ported to Intel TFLOPS in 1996 (Cougar)
 - Portals 1.0
 - User/Kernel managed buffers
 - Portals 2.0
 - Avoid buffering and mem copies

Target Architecture

- Distributed memory message passing
- Partition model of resources
 - Compute nodes
 - Small number of CPUs
 - Diskless
 - High performance network
 - Peak processor speed in MHz is near peak network bandwidth in MB/s
 - Service nodes
 - Disk I/O nodes
 - Network I/O nodes

Cplant™

Cplant™ Architecture

MPP "look and feel"

- Distributed systems and services architecture
- Scalable to 10,000 nodes
- Embedded RAS features
- Preserve application code base

ASCI Red

Extends ASCI Red advantages

Antarctica

Why Linux?

- Free (speech & beer)
- Large developer community
- Kernel modules
 - No need to reboot during development
 - Supports partition model
- Supported on several platforms
- Familiarity with Linux
 - Ported Linux 2.0 to ASCI/Red

Results

- Cplant™ is now open source
- Large developer community is a wash
 - Most developers not focused on HPC and scaling issues
 - Extreme Linux helped
 - Extreme Linux isn't very extreme
- Modules
 - Big help in developing the networking stack
- Portals over any network device
 - Myrinet
 - RTS/CTS to skbufs
 - Portals over IP
 - Portals over IP in kernel
- Cplant™ runs on Alpha, x86, IA-64
- Linux changes too often to really be familiar

Other Observations

- Reliability
 - Linux hasn't been the cause of any machine interrupts
 - Still have other problems
 - Main selling point of Linux for the server market
- System software debugging tools are limited
- Application development environment more extensive
 - Compilers, debuggers, tools
- Lots of stuff we don't have to worry about
 - Device drivers: Ethernet, Serial
 - BIOS's
 - Hardware bugs
- Linux works OK for Cplant[™] and commodity-based clusters

Technical Issues

- Predictability avoid work unrelated to the computation
 - Linux on Alpha takes 1000 interrupts per second to keep time
 - Daemons: init, inetd, ipciod
 - Kernel threads: kswapd, kflushd, kupdate, kpiod
 Inappropriate resource management strategies
- VM system
 - Adverse impact on message passing
 - No physically contiguous memory
 - Must pin memory pages
 - Must maintain page tables on NIC
- Requires a filesystem
 - Not appropriate for diskless compute nodes

Social Issues

- Kernel development moves fast
 - Significant resources needed to keep up
- Distributions and development environments also change frequently
 - Tool vendors have trouble keeping up
- Linus changed out the VM system in the middle of the 2.4 kernels!
 - 2.4.9 van Riel VM system
 - 2.4.10 Arcangeli VM system
 - 150+ patches to the van Riel VM system
 - Linux fork?
- Server vs. multimedia desktop
 - Not HPC

Summary

- Linux works OK for Cplant[™] and commodity clusters
 - CPU performance is acceptable for cluster bytes-to-FLOPS ratio
- Probable performance issues for platforms with a reasonable bytes-to-FLOPS ratio
- Community is a mixed blessing
 - Linux trades performance for everything

Future

- Take the good, leave the bad
- Leverage Linux hardware support portability
 - BIOS
 - PCI chipsets
 - Processors
- Leverage application development environment
 - Compilers
 - Linkers
 - Binary file format
- Customize resource management strategies for HPC
 - Simple strategies have worked well

